Search Results/Filters    

Filters

Year

Banks



Expert Group











Full-Text


Issue Info: 
  • Year: 

    0
  • Volume: 

    1
  • Issue: 

    3
  • Pages: 

    35-47
Measures: 
  • Citations: 

    0
  • Views: 

    3
  • Downloads: 

    0
Abstract: 

با گسترش شبکه های کامپیوتری و رشد روزافزون کاربردهای مبتنی بر اینترنت اشیاء (IoT)، شبکه های حسگر بی سیم (WSN)، و شبکه های پویا مانند MANET، مساله بهینه سازی مسیریابی به یکی از چالش های بنیادین در علوم رایانه و مهندسی شبکه تبدیل شده است. الگوریتم های سنتی همچون دایکسترا و بلمن-فورد اگرچه در محیط های پایدار کارایی نسبی دارند، اما به دلیل محدودیت در سازگاری با تغییرات دینامیک و چندهدفه بودن مسائل جدید، پاسخگوی نیازهای محیط های مدرن نیستند. در این راستا، هدف اصلی این مقاله، بررسی جامع نقش و کارایی الگوریتم فاخته (Cuckoo optimization algorithm - COA) به عنوان یک الگوریتم فراابتکاری نوین در بهینه سازی مسیریابی شبکه های کامپیوتری است. الگوریتم فاخته با الهام از رفتار تولیدمثل انگلی پرنده فاخته و سازوکار پرش های Lévy، به عنوان رویکردی ساده اما توانمند به ویژه برای حل مسائل غیرخطی، چندهدفه و پویا معرفی شده است. در این مقاله، ضمن تبیین ساختار، مراحل اجرایی و مزایا و معایب الگوریتم فاخته نسبت به روش های دیگر (مانند PSO، GA و ACO)، به مرور مطالعات میدانی و شبیه سازی های انجام شده در حوزه های WSN، MANET، SDN و IoT پرداخته شده است. نتایج پژوهش های گذشته نشان می دهد استفاده از COA سبب کاهش محسوس مصرف انرژی، بهبود نرخ تحویل بسته و افزایش طول عمر شبکه نسبت به الگوریتم های جایگزین شده است. همچنین، کاربردهای عملی COA در محیط های پویا و دارای تغییرات سریع توپولوژی، قابلیت ها و برتری های بیشتری نسبت به رقبای خود آشکار ساخته است. در ادامه، مقاله با تمرکز بر نتایج مقایسه ای میان COA و دیگر الگوریتم های فراابتکاری، نشان می دهد که الگوریتم فاخته به سبب سادگی ساختار، سرعت همگرایی بالا و توان جستجوی جامع تر، برای کاربردهای شبکه ای خصوصاً در سناریوهای داده محور و نوظهور، انتخاب مناسبی است. با این حال، چالش هایی نظیر نیاز به تنظیم بهینه پارامترها، تطبیق محدود با مسائل گسسته و عدم وجود استانداردسازی جامع نیز شناسایی شده است. بر همین اساس، پیشنهادهای پژوهشی آینده، بهره گیری از ترکیب COA با سایر الگوریتم ها، توسعه نسخه های یادگیری محور و به کارگیری آن در محیط های واقعی و بزرگ مقیاس را مورد تاکید قرار می دهد.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 3

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2023
  • Volume: 

    9
Measures: 
  • Views: 

    127
  • Downloads: 

    0
Abstract: 

In the evening where ranking on the search engine result pages is directly related to increasing the number of visitors and the progress and development of a business, search engine optimization or SEO is a process that helps to gain a higher ranking. Websites can be classified with the help of machine learning techniques based on the quality of setting SEO guidelines. Classification algorithms are combined with each other with the aim of increasing classification accuracy and are used as an ensemble classification model. In this article, we implement an ensemble classification model with the help of a random forest algorithm, which places web pages in one of the predefined classes based on SEO quality. The obtained results show that the accuracy of the constructed model is between 70. 50% and 73. 17% and is more accurate than previous works in which ensemble classification algorithms were not used. The built model can help developers build automatic software for detecting the SEO quality of web pages.

Yearly Impact:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 127

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0
Issue Info: 
  • Year: 

    2022
  • Volume: 

    12
  • Issue: 

    1
  • Pages: 

    95-110
Measures: 
  • Citations: 

    0
  • Views: 

    68
  • Downloads: 

    8
Abstract: 

Biomass is a crucial component of the carbon cycle,thus, accurate evaluation is essential to manage the forest and understand its role in climate change. Biomass estimation also supports the international reduced emission from deforestation and forest degradation (REDD), including cases such as deforestation reduction, sustainable management of forests, protection and enhancement of forest carbon reserves). Today, using remote sensing techniques with the help of field data has revolutionized the estimation of forest biomass. forest biomass estimation can be based on the processing of remote sensing data obtained from active sensors (for example, lidar and radar) and passive sensors (for example, optical sensors). In most previous studies, mainly vegetation indices (such as Normalized Difference Vegetation Index (NDVI), Ratio Vegetation Index (RVI), and Soil-Adjusted Vegetation Index (SAVI)) have been used to estimate biomass. Using terrain data, the amount of biomass is estimated using allometric equations, and the required pre-processing is done on optical and radar images. The attributes obtained from the scattering matrix and the ratios of the components of the scattering matrix and the attributes obtained from H/α decomposition are extracted from the radar image and the attributes of vegetation, soil and water are extracted from the optical image. Results and discussion: In this study, in order to improve the accuracy of estimating the biomass of forest areas, the features extracted from the optical images of Sentinel-2 sensor and Sentinel-1 radar data as well as field data of Noor forest areas, Mazandaran province, whose forest cover type, Carpinus betulus and Quercus Castaneifolia and also includes rare species such as Populus Caspica Bornm trees. In this study, we used the genetic optimization method in four classes of mixed vegetation, natural forest, degraded forest, and forest reserves were studied. In this regard, multivariate linear regression and support vector regression have been used to model between ground data and radar and optical features. Genetic algorithm (GA) is one of the most common evolutionary algorithms. This method finds potential solutions to optimize problems at the right time, especially when the search space is very wide. Also, a genetic algorithm has been used during the modeling process using multivariate linear regression to select the optimal features extracted from radar and optical images. Evaluation of the results showed that the use of the multivariate regression method led to more accurate results than the support vector regression method in the study area. Also, evaluation of the results showed that using features selected by a genetic algorithm led to an accurate R2 of 0. 78, 0. 87, 0. 68, and 0. 79 for first to fourth vegetation classes, respectively. Therefore, the results showed that the efficiency of the genetic algorithm in feature selection for biomass estimation from satellite images using the multivariate regression method.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 68

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 8 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Issue Info: 
  • Year: 

    2018
  • Volume: 

    12
  • Issue: 

    -
  • Pages: 

    1-22
Measures: 
  • Citations: 

    1
  • Views: 

    192
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 192

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2019
  • Volume: 

    11
  • Issue: 

    1
  • Pages: 

    1-18
Measures: 
  • Citations: 

    0
  • Views: 

    633
  • Downloads: 

    0
Abstract: 

In the absence of satellite ephemeris data and inner geometry of satellite’ s sensor, utilization of Rational Function Models (RFMs) is one of the best approaches to georeferencing satellite images and extracting spatial information from them. However, since RFMs have high number of coefficients, then usually high number of control points is needed for their estimation. In the other hand, RFM terms are uninterpretable and all of them causes over-parametrization error which count as the most important weakness of the terrain-dependent RFMs. Utilization of optimization algorithms is one of the best approaches to eliminate these weaknesses. Therefore, various optimization algorithms have been used to discover the optimal composition of RFM’ s terms. Since the mechanism of these algorithms is different, the performance and feature characteristics of these algorithms differ in the discovery of the optimal composition train-dependent RFM’ s terms. But the existing differences not comprehensively analyzed. In this paper, in order to comprehensive assessment the abilities of Genetic optimization algorithm (GA), Genetic modified algorithm (GM), and a modified Particle Swarm optimization (PSO) in terms of accuracy, quickness, number of control points required, and reliability of results, are evaluated. These methods are evaluated using for different datasets including a GeoEye-1, an IKONOS-2, a SPOT-3-1A, and a SPOT-3-1B satellite images. In terms of accuracy achieved, difference between these methods was less than 0. 4 pixel. In terms of speed of evaluation of parameters, GM was 10 to 12 time more quickly in comparison with two other algorithms. In terms of control points required, degree of freedom of modified PSO was 45. 25 percent and 27 percent more than GM and GA respectively, and finally in terms of reliability, the dispersion of RMSE obtained in 10 runs of three algorithms are relatively same. These results indicated that accuracy and reliability of all three methods are almost the same, speed of GM is higher and modified PSO needs less control points to optimize terrain-dependent RFM.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 633

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2022
  • Volume: 

    6
  • Issue: 

    2
  • Pages: 

    295-318
Measures: 
  • Citations: 

    0
  • Views: 

    53
  • Downloads: 

    0
Abstract: 

Numerous algorithms have recently been invented with varying strengths and weaknesses, none of which is the best for all cases. Herein, a hybrid optimization method known as a PSOHHO optimization algorithm is presented. There are two methods for combining algorithms: parallel and sequential. We adopted the parallel method and optimized the algorithm's performance. We cover the weaknesses of one algorithm with the strengths of another algorithm using a new method of combination. In this method, using several formulas, the top populations are exchanged between the two algorithms, and a new population is created. With this ability, the strengths of an algorithm can be used to compensate for the weaknesses of the other algorithm. In this method, no changes are made to the algorithms. The main goal is to use existing algorithms. This method aims to attain the optimal solution in the shortest time possible. Two algorithms of particle swarm optimization (PSO) and Harris Hawks optimization (HHO) were used to present this method and five truss samples were considered to confirm the performance of this method. Based on the results, this method has rapid convergence speed and acceptable results compared to the other methods. It also yields better results than its basic algorithms.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 53

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Journal: 

Therm Sci

Issue Info: 
  • Year: 

    2022
  • Volume: 

    26
  • Issue: 

    5
  • Pages: 

    3975-3986
Measures: 
  • Citations: 

    1
  • Views: 

    23
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 23

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Journal: 

Soft computing

Issue Info: 
  • Year: 

    2022
  • Volume: 

    -
  • Issue: 

    -
  • Pages: 

    0-0
Measures: 
  • Citations: 

    1
  • Views: 

    23
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 23

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2024
  • Volume: 

    13
  • Issue: 

    2
  • Pages: 

    73-91
Measures: 
  • Citations: 

    0
  • Views: 

    10
  • Downloads: 

    0
Abstract: 

The Fruit Fly optimization algorithm is an intelligent optimization algorithm. To improve accuracy, convergence speed, as well as jumping out of local optimum, a modified Fruit Fly optimization algorithm (MFFOV) is proposed in this paper. The proposed algorithm uses velocity in particle swarm optimization and improves smell based on dimension and random perturbations. As a result of testing ten benchmark functions, the convergence speed and accuracy are clearly improved in Modified Fruit Fly optimization (MFFOV) compared to algorithms of Fruit Fly optimization (FFO), Particle Swarm optimization (PSO), Artificial Bee Colony (ABC), Teaching-Learning-Based optimization (TLBO), Genetic algorithms (GA), Gravitational Search algorithms (GSA), Differential Evaluations (DEs) and Hunter–Prey optimizations (HPOs). A performance verification algorithm is also proposed and applied to two engineering problems. Test functions and engineering problems were successfully solved by the proposed algorithm.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 10

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2016
  • Volume: 

    13
  • Issue: 

    2 (49)
  • Pages: 

    35-52
Measures: 
  • Citations: 

    1
  • Views: 

    1450
  • Downloads: 

    0
Abstract: 

In scheduling, from both theoretical and practical points of view, a set of machines in parallel is a setting that is important. From the theoretical viewpoint, it is a generalization of the single machine scheduling problem. From the practical point of view, the occurrence of resources in parallel is common in real-world. When machines are computers, a parallel program is necessary because the members of the program are performed in a parallel fashion, and this performance is executed according to some precedence relationship. This paper shows the problem of allocating a number of non-identical tasks in a multi-processor or multicomputer system. The model assumes that the system consists of a number of identical processors, and only one task may be executed on a processor at a time. Moreover, all schedules and tasks are non-preemptive.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1450

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 1
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button